Aerospace and Electronic Systems Magazine January 2018 - 40

Focus-Before-Detection: Part II

Figure 7.

The existing ISAR target reconstruction flowchart.

Figure 8.

The target reconstruction via 3DS-RFT method.

constructed information via these FBD methods is incomplete for
real targets. On the other hand, modern imaging radar like synthetic aperture radar/inverse synthetic aperture radar (SAR/ISAR) has
the ability to reconstruct a target or scene in the range-azimuth 2D
plane or range-azimuth-elevation 3D space. For uncooperatively
moving targets, ISAR normally obtains high-resolution images
with three sequential steps, i.e., the translational motion compensation, the image reconstruction, and the rotation velocity retrieval,
which are used step-by-step to obtain high-resolution scaled ISAR
images as Figure 7. In Figure 7, the polar format algorithm (PFA)
and convolution back-projection (CBP) are two reconstruction
algorithms that can overcome the migration through range cell
(MTRC) effect [33, 35] for high-resolution ISAR imaging with
large rotation angle. Obviously, the steps of the existing ISAR imaging are complicated and the performance of each step will affect
the ultimate quality on the imaging result. As long as the target's
40

motion including translation motion and rotation can be modeled
with finite parameters, the RFT can extended to the three-dimensional space Radon-Fourier transform (3DS-RFT) [26] for moving
target reconstruction with 3D scattering structure as Figure 8. With
the searched 3D translational and rotational motion parameters, the
proposed 3DS-RFT can reconstruct targets in a 3D space. That is,
3DS-RFT can produce 3D scaled ISAR images. In Figure 7 and
Figure 8, the unscaled and scaled imaging results are provided
based on real measured C-band ISAR data with 400 MHz bandwidth. As for the reconstruction 3D resolution, they are decided by
the bandwidth of the transmitting signal as well as the radar LOS
changes, i.e., the effective 3D rotation, during the integration time.
Furthermore, PSO with objective function of 3D image entropy is
further proposed to speed up the implementation of 3DS-RFT [26],
and a focused 3D image can be reconstructed iteratively. For an uncooperatively moving airplane, its simulated echoes are generated

IEEE A&E SYSTEMS MAGAZINE

JANUARY 2018



Table of Contents for the Digital Edition of Aerospace and Electronic Systems Magazine January 2018

No label
Aerospace and Electronic Systems Magazine January 2018 - No label
Aerospace and Electronic Systems Magazine January 2018 - Cover2
Aerospace and Electronic Systems Magazine January 2018 - 1
Aerospace and Electronic Systems Magazine January 2018 - 2
Aerospace and Electronic Systems Magazine January 2018 - 3
Aerospace and Electronic Systems Magazine January 2018 - 4
Aerospace and Electronic Systems Magazine January 2018 - 5
Aerospace and Electronic Systems Magazine January 2018 - 6
Aerospace and Electronic Systems Magazine January 2018 - 7
Aerospace and Electronic Systems Magazine January 2018 - 8
Aerospace and Electronic Systems Magazine January 2018 - 9
Aerospace and Electronic Systems Magazine January 2018 - 10
Aerospace and Electronic Systems Magazine January 2018 - 11
Aerospace and Electronic Systems Magazine January 2018 - 12
Aerospace and Electronic Systems Magazine January 2018 - 13
Aerospace and Electronic Systems Magazine January 2018 - 14
Aerospace and Electronic Systems Magazine January 2018 - 15
Aerospace and Electronic Systems Magazine January 2018 - 16
Aerospace and Electronic Systems Magazine January 2018 - 17
Aerospace and Electronic Systems Magazine January 2018 - 18
Aerospace and Electronic Systems Magazine January 2018 - 19
Aerospace and Electronic Systems Magazine January 2018 - 20
Aerospace and Electronic Systems Magazine January 2018 - 21
Aerospace and Electronic Systems Magazine January 2018 - 22
Aerospace and Electronic Systems Magazine January 2018 - 23
Aerospace and Electronic Systems Magazine January 2018 - 24
Aerospace and Electronic Systems Magazine January 2018 - 25
Aerospace and Electronic Systems Magazine January 2018 - 26
Aerospace and Electronic Systems Magazine January 2018 - 27
Aerospace and Electronic Systems Magazine January 2018 - 28
Aerospace and Electronic Systems Magazine January 2018 - 29
Aerospace and Electronic Systems Magazine January 2018 - 30
Aerospace and Electronic Systems Magazine January 2018 - 31
Aerospace and Electronic Systems Magazine January 2018 - 32
Aerospace and Electronic Systems Magazine January 2018 - 33
Aerospace and Electronic Systems Magazine January 2018 - 34
Aerospace and Electronic Systems Magazine January 2018 - 35
Aerospace and Electronic Systems Magazine January 2018 - 36
Aerospace and Electronic Systems Magazine January 2018 - 37
Aerospace and Electronic Systems Magazine January 2018 - 38
Aerospace and Electronic Systems Magazine January 2018 - 39
Aerospace and Electronic Systems Magazine January 2018 - 40
Aerospace and Electronic Systems Magazine January 2018 - 41
Aerospace and Electronic Systems Magazine January 2018 - 42
Aerospace and Electronic Systems Magazine January 2018 - 43
Aerospace and Electronic Systems Magazine January 2018 - 44
Aerospace and Electronic Systems Magazine January 2018 - 45
Aerospace and Electronic Systems Magazine January 2018 - 46
Aerospace and Electronic Systems Magazine January 2018 - 47
Aerospace and Electronic Systems Magazine January 2018 - 48
Aerospace and Electronic Systems Magazine January 2018 - 49
Aerospace and Electronic Systems Magazine January 2018 - 50
Aerospace and Electronic Systems Magazine January 2018 - 51
Aerospace and Electronic Systems Magazine January 2018 - 52
Aerospace and Electronic Systems Magazine January 2018 - 53
Aerospace and Electronic Systems Magazine January 2018 - 54
Aerospace and Electronic Systems Magazine January 2018 - 55
Aerospace and Electronic Systems Magazine January 2018 - 56
Aerospace and Electronic Systems Magazine January 2018 - 57
Aerospace and Electronic Systems Magazine January 2018 - 58
Aerospace and Electronic Systems Magazine January 2018 - 59
Aerospace and Electronic Systems Magazine January 2018 - 60
Aerospace and Electronic Systems Magazine January 2018 - 61
Aerospace and Electronic Systems Magazine January 2018 - 62
Aerospace and Electronic Systems Magazine January 2018 - 63
Aerospace and Electronic Systems Magazine January 2018 - 64
Aerospace and Electronic Systems Magazine January 2018 - Cover3
Aerospace and Electronic Systems Magazine January 2018 - Cover4
http://www.brightcopy.net/allen/aesm/34-2s
http://www.brightcopy.net/allen/aesm/34-2
http://www.brightcopy.net/allen/aesm/34-1
http://www.brightcopy.net/allen/aesm/33-12
http://www.brightcopy.net/allen/aesm/33-11
http://www.brightcopy.net/allen/aesm/33-10
http://www.brightcopy.net/allen/aesm/33-09
http://www.brightcopy.net/allen/aesm/33-8
http://www.brightcopy.net/allen/aesm/33-7
http://www.brightcopy.net/allen/aesm/33-5
http://www.brightcopy.net/allen/aesm/33-4
http://www.brightcopy.net/allen/aesm/33-3
http://www.brightcopy.net/allen/aesm/33-2
http://www.brightcopy.net/allen/aesm/33-1
http://www.brightcopy.net/allen/aesm/32-10
http://www.brightcopy.net/allen/aesm/32-12
http://www.brightcopy.net/allen/aesm/32-9
http://www.brightcopy.net/allen/aesm/32-11
http://www.brightcopy.net/allen/aesm/32-8
http://www.brightcopy.net/allen/aesm/32-7s
http://www.brightcopy.net/allen/aesm/32-7
http://www.brightcopy.net/allen/aesm/32-6
http://www.brightcopy.net/allen/aesm/32-5
http://www.brightcopy.net/allen/aesm/32-4
http://www.brightcopy.net/allen/aesm/32-3
http://www.brightcopy.net/allen/aesm/32-2
http://www.brightcopy.net/allen/aesm/32-1
http://www.brightcopy.net/allen/aesm/31-12
http://www.brightcopy.net/allen/aesm/31-11s
http://www.brightcopy.net/allen/aesm/31-11
http://www.brightcopy.net/allen/aesm/31-10
http://www.brightcopy.net/allen/aesm/31-9
http://www.brightcopy.net/allen/aesm/31-8
http://www.brightcopy.net/allen/aesm/31-7
https://www.nxtbookmedia.com