Aerospace and Electronic Systems Magazine April 2018 - 48

3D FMCW MIMO Radar System for Medium-Range Applications

Figure 2.

Block diagram of the 3D imaging FMCW 16 × 16 MIMO radar demonstrator. The main components are the antenna board, the digital board, the DDS
board, the receiver, the laptop, and the camera.

ing is triggered by the human-machine interface (HMI). Once
From the laptop, the DDS board and hence the phase locked
started, the TX control unit is commanded by Zynq, which runs
loop (PLL) can be configured to create the desired FMCW chirp.
a program on the ARM processor. The TX control unit sets the
The most important parameters are the chirp length in time and
proper bit combination for the switch matrices to select the TX
the bandwidth. The chirp is then transmitted to the antenna board,
antenna.
where it is distributed to two switch chains and the receiver board
The radar processing is carried out on the laptop, where digital
using a three-way Wilkinson divider, as can be seen in Figure 3.
beamforming techniques are applied to extract the target position
First, each switch chain can choose between eight TX antenin range, azimuth, and elevation. The target position is sent to the
nas or a matched load, enabling a TDM configuration and thus
servo controller, which creates the steering signals for a two-axis
orthogonality of the signals. This means that all TX antennas are
gimbal, where the (zoom) camera is mounted. The camera can then
switched consecutively within one MIMO cycle. Second, the retake a close-up picture or video of the target and send it back to the
ceiver uses the originally sent chirp as a local oscillator (LO) signal
HMI. The image can then possibly be used to classify the target or
to downconvert the 16 received delayed chirps. This way, the beat
to do further image processing.
frequencies (associated with the range information) of the target
can be extracted.
A proprietary Zynq-based platform
(Xilinx), which includes a FPGA and
an ARM processor, serves as the interface between the analog-to-digital
converter (ADC) and the laptop performing the acquisition of digital data.
The resulting signals are digitized by
16 ADCs, which are interfaced to the
FPGA. The data are first stored in the
FPGA and then transferred to the double data rate (DDR) memory of the system via direct memory access (DMA).
From the digital board, the data are Figure 3.
transferred to the laptop via Ethernet. Component-level block diagrams of the antenna board and the receiver with schematic of the switch
The whole process of the data capturchains.
48

IEEE A&E SYSTEMS MAGAZINE

APRIL 2018



Table of Contents for the Digital Edition of Aerospace and Electronic Systems Magazine April 2018

No label
Aerospace and Electronic Systems Magazine April 2018 - No label
Aerospace and Electronic Systems Magazine April 2018 - Cover2
Aerospace and Electronic Systems Magazine April 2018 - 1
Aerospace and Electronic Systems Magazine April 2018 - 2
Aerospace and Electronic Systems Magazine April 2018 - 3
Aerospace and Electronic Systems Magazine April 2018 - 4
Aerospace and Electronic Systems Magazine April 2018 - 5
Aerospace and Electronic Systems Magazine April 2018 - 6
Aerospace and Electronic Systems Magazine April 2018 - 7
Aerospace and Electronic Systems Magazine April 2018 - 8
Aerospace and Electronic Systems Magazine April 2018 - 9
Aerospace and Electronic Systems Magazine April 2018 - 10
Aerospace and Electronic Systems Magazine April 2018 - 11
Aerospace and Electronic Systems Magazine April 2018 - 12
Aerospace and Electronic Systems Magazine April 2018 - 13
Aerospace and Electronic Systems Magazine April 2018 - 14
Aerospace and Electronic Systems Magazine April 2018 - 15
Aerospace and Electronic Systems Magazine April 2018 - 16
Aerospace and Electronic Systems Magazine April 2018 - 17
Aerospace and Electronic Systems Magazine April 2018 - 18
Aerospace and Electronic Systems Magazine April 2018 - 19
Aerospace and Electronic Systems Magazine April 2018 - 20
Aerospace and Electronic Systems Magazine April 2018 - 21
Aerospace and Electronic Systems Magazine April 2018 - 22
Aerospace and Electronic Systems Magazine April 2018 - 23
Aerospace and Electronic Systems Magazine April 2018 - 24
Aerospace and Electronic Systems Magazine April 2018 - 25
Aerospace and Electronic Systems Magazine April 2018 - 26
Aerospace and Electronic Systems Magazine April 2018 - 27
Aerospace and Electronic Systems Magazine April 2018 - 28
Aerospace and Electronic Systems Magazine April 2018 - 29
Aerospace and Electronic Systems Magazine April 2018 - 30
Aerospace and Electronic Systems Magazine April 2018 - 31
Aerospace and Electronic Systems Magazine April 2018 - 32
Aerospace and Electronic Systems Magazine April 2018 - 33
Aerospace and Electronic Systems Magazine April 2018 - 34
Aerospace and Electronic Systems Magazine April 2018 - 35
Aerospace and Electronic Systems Magazine April 2018 - 36
Aerospace and Electronic Systems Magazine April 2018 - 37
Aerospace and Electronic Systems Magazine April 2018 - 38
Aerospace and Electronic Systems Magazine April 2018 - 39
Aerospace and Electronic Systems Magazine April 2018 - 40
Aerospace and Electronic Systems Magazine April 2018 - 41
Aerospace and Electronic Systems Magazine April 2018 - 42
Aerospace and Electronic Systems Magazine April 2018 - 43
Aerospace and Electronic Systems Magazine April 2018 - 44
Aerospace and Electronic Systems Magazine April 2018 - 45
Aerospace and Electronic Systems Magazine April 2018 - 46
Aerospace and Electronic Systems Magazine April 2018 - 47
Aerospace and Electronic Systems Magazine April 2018 - 48
Aerospace and Electronic Systems Magazine April 2018 - 49
Aerospace and Electronic Systems Magazine April 2018 - 50
Aerospace and Electronic Systems Magazine April 2018 - 51
Aerospace and Electronic Systems Magazine April 2018 - 52
Aerospace and Electronic Systems Magazine April 2018 - 53
Aerospace and Electronic Systems Magazine April 2018 - 54
Aerospace and Electronic Systems Magazine April 2018 - 55
Aerospace and Electronic Systems Magazine April 2018 - 56
Aerospace and Electronic Systems Magazine April 2018 - 57
Aerospace and Electronic Systems Magazine April 2018 - 58
Aerospace and Electronic Systems Magazine April 2018 - 59
Aerospace and Electronic Systems Magazine April 2018 - 60
Aerospace and Electronic Systems Magazine April 2018 - Cover3
Aerospace and Electronic Systems Magazine April 2018 - Cover4
http://www.brightcopy.net/allen/aesm/34-2s
http://www.brightcopy.net/allen/aesm/34-2
http://www.brightcopy.net/allen/aesm/34-1
http://www.brightcopy.net/allen/aesm/33-12
http://www.brightcopy.net/allen/aesm/33-11
http://www.brightcopy.net/allen/aesm/33-10
http://www.brightcopy.net/allen/aesm/33-09
http://www.brightcopy.net/allen/aesm/33-8
http://www.brightcopy.net/allen/aesm/33-7
http://www.brightcopy.net/allen/aesm/33-5
http://www.brightcopy.net/allen/aesm/33-4
http://www.brightcopy.net/allen/aesm/33-3
http://www.brightcopy.net/allen/aesm/33-2
http://www.brightcopy.net/allen/aesm/33-1
http://www.brightcopy.net/allen/aesm/32-10
http://www.brightcopy.net/allen/aesm/32-12
http://www.brightcopy.net/allen/aesm/32-9
http://www.brightcopy.net/allen/aesm/32-11
http://www.brightcopy.net/allen/aesm/32-8
http://www.brightcopy.net/allen/aesm/32-7s
http://www.brightcopy.net/allen/aesm/32-7
http://www.brightcopy.net/allen/aesm/32-6
http://www.brightcopy.net/allen/aesm/32-5
http://www.brightcopy.net/allen/aesm/32-4
http://www.brightcopy.net/allen/aesm/32-3
http://www.brightcopy.net/allen/aesm/32-2
http://www.brightcopy.net/allen/aesm/32-1
http://www.brightcopy.net/allen/aesm/31-12
http://www.brightcopy.net/allen/aesm/31-11s
http://www.brightcopy.net/allen/aesm/31-11
http://www.brightcopy.net/allen/aesm/31-10
http://www.brightcopy.net/allen/aesm/31-9
http://www.brightcopy.net/allen/aesm/31-8
http://www.brightcopy.net/allen/aesm/31-7
https://www.nxtbookmedia.com